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Discrete time MC / First properties
Classification

Asymptotic behaviour

Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
“One step forward” method

Discrete time Markov Chain (MC): definition

Process (Xn)n∈N where Xn r.v. over (Ω,F ,P), with values in E .

Definition (Markov Chain : MC)

(Xn) markovian if ∀n ∈N, ∀x0, . . . , xn , xn+1 ∈ E (space of states),
P(Xn+1 = xn+1|Xn = xn , . . . , X0 = x0) =P(Xn+1 = xn+1|Xn = xn)

subject to P(Xn = xn , . . . , X0 = x0) 6= 0.

Intuition: “future only depends on present”, “memoryless”, ...

Definition (Time Homogeneous MC : HMC)

(Xn) homogeneous if ∀n∈N,∀i , j ∈E,P(Xn+1=j |Xn=i )=P(X1=j |X0=i )

Definition (Transition matrix & graph of Homogeneous MC)

. Transition matrix: P = (pi j )i , j∈E with pi j =P(X1=j |X0=i )

. Transition graph: vertices = E, edge i j if pi j > 0 (weight pi j )
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Discrete Time Markov Chain (MC): examples ?

Ï Jeu de l’oie / Snakes and ladders

Ï Sequence of i.i.d. r.v. for any law over E .

Ï Uniform random walk overNd or Zd .

Ï Some randomized algorithms, e.g. in
system/network protocols.

Proposition (Characteristic example)

Let (Un)n∈N∗ i.i.d. sequence of r.v. with values in F , E finite or
countable space, f map E ×F → E, X0 r.v. with values in E and
independent of the sequence (Un), then the recurrence equation
Xn+1 = f (Xn ,Un+1) define an homogeneous MC with values in E.
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Transition matrix & graph

1 2 3 4 5
1 1/2 1/4 0 1/4 0
2 1/2 0 1/2 0 0
3 0 4/5 0 0 1/5
4 0 0 1 0 0
5 0 1/3 0 2/3 0

P = stochastic matrix:
• positive coeff: ∀i , j , pi j ≥ 0
• ∑

over line = 1 : ∀i ,
∑

j pi j = 1

1 2

34

51/4

2/3

1/4

1/2

1/24/5

1/5

1

1/2

MC = “random walk” :
realization X0(ω),X1(ω),X2(ω),X3(ω),X4(ω),X5(ω),... :

walk in the transition graph

Important Notation: let i ∈ E , Pi (A)
def= P(A|X0 = i ) for event A

Ei (Z )
def= E(Z |X0 = i ) =∑

z
z ·P(Z = z|X0 = i ) for real r.v. Z (

∑
ou

∫
)
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Markov property in practice

Theorem (“General” Markov property)

Let (Xn) MC with values in E, at time n ∈N in state i ∈ E,
let I+ ∈P (E)⊗N a set of trajectories in the future,

let I− ∈P (E n) a set of trajectories in the past,

P((Xn+1, Xn+2, . . .) ∈ I+|(X0, . . . , Xn−1) ∈ I−, Xn = i ) =P((Xn+1, Xn+2, . . .) ∈ I+|Xn = i )

And if homogeneous MC, this term is: =P((X1, X2, . . .) ∈ I+|X0 = i )

English formulation: ∀i ∈ E , ∀n ∈N, the future at time n and the
past at time n are conditionally independent given the present state
Xn = i .

Examples of use:
P(X10 = a, X7 = b|X5 = c, X3 = d , X2 = e) =P(X10 = a, X7 = b|X5 = c)

P(∀n ≥ 11, Xn 6∈ {a,b}|X10 = c,∀n ≤ 9, Xn ∈ {d ,e}) =P(∀n ≥ 11, Xn 6∈ {a,b}|X10 = c)
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Chapman-Kolmogorov Equations (I)

Notation: pi j (r,r + s)
def= P(Xr+s = j |Xr = i ) for i , j ∈ E , r, s ∈N.

Theorem (Chapman-Kolmogorov)

Any MC (Xn)n∈N satisfies the equations: ∀i , j ,k ∈ E, ∀r, s, t ∈N,
pi j (r,r + s + t ) =∑

k pi k (r,r + s)pk j (r + s,r + s + t )

Corollary (Matrix version)

Given matrices P (r,r + s)
def= (

pi j (r,r + s)
)

i , j∈E , then ∀r, s, t ∈N,
P (r,r + s + t ) = P (r,r + s)P (r + s,r + s + t )

Corollary (Homogeneous case)

If HMC, proba to jump from i to j in n steps = coeff i,j of P n denoted
pi j (n).
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Chapman-Kolmogorov Equations (II)

Vector notation of the law ν of r.v. X with values in E :
ν= (νi )i∈E line vector with νi

def= P(X = i )

Corollary (Homogeneous case)

If HMC, the law π(n) of Xn is fully set by the matrix P and the law π(0)

of X0: π(n) =π(0)P n .

AA

BB CC

DD

1/2

1

1/2

1/2

1/2
1/2

1/2
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ν= (νi )i∈E line vector with νi
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Vector notation of the law ν of r.v. X with values in E :
ν= (νi )i∈E line vector with νi
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Stopping time : definition & examples

Definition (Stopping time of a stochastic process)

Stopping time T of stoch proc (Xn)n∈N: r.v. with values inN∪ {+∞}
s.t. ∀n ∈N, event {T = n} can be described using X0, . . . , Xn :
{T = n} = {(X0, . . . , Xn) ∈ I } for a set of trajectories I ⊆ E n+1.

Intuition: time event which can be expressed with no reference to
the future.

Examples: let (Xn) MC with values in E and F ⊆ E ,

Ï Time to reach F : τF = inf{n ≥ 0|Xn ∈ F } ?

,

Ï Time to come back to F : TF = inf{n ≥ 1|Xn ∈ F } ?

,

Ï Last time in F : LF = sup{n ≥ 0|Xn ∈ F } ?

/

Special notation: for i ∈ E , Ti
def= T{i } and τi

def= τ{i }.
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Stopping time T of stoch proc (Xn)n∈N: r.v. with values inN∪ {+∞}
s.t. ∀n ∈N, event {T = n} can be described using X0, . . . , Xn :
{T = n} = {(X0, . . . , Xn) ∈ I } for a set of trajectories I ⊆ E n+1.

Intuition: time event which can be expressed with no reference to
the future.

Examples: let (Xn) MC with values in E and F ⊆ E ,

Ï Time to reach F : τF = inf{n ≥ 0|Xn ∈ F } ,
Ï Time to come back to F : TF = inf{n ≥ 1|Xn ∈ F } ,
Ï Last time in F : LF = sup{n ≥ 0|Xn ∈ F } /

Special notation: for i ∈ E , Ti
def= T{i } and τi

def= τ{i }.
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
“One step forward” method

Stopping time: quick exercise

Exercise: let T,T1,T2 stopping times for (Xn), tell whether the next
r.v. are also stopping times for (Xn) ?

1 a constant r.v. c

2 T + c where c ∈N∗ fixed

3 T − c where c ∈N∗ fixed

4 min(T1,T2)

5 max(T1,T2)

6 N (t ) = max{n ∈N|X0 +X1 + . . .+Xn ≤ t } (Xn positive r.v.)

7 N (t )+1
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
“One step forward” method

Strong Markov property: regeneration

Theorem (Strong Markov property)

• Let T stopping time for HMC (Xn), then subject to T <+∞ and
XT = i , (XT+n)n≥0 is markovian and independent of X0, . . . , XT (also
denoted (XT∧n)n≥0 où ∧= min).
• Moreover, for any event A described with X0, . . . , XT and
I+ ∈P (E)⊗N

P((XT+1, XT+2, . . .) ∈ I+|XT = i ,T <+∞, A) =P((X1, X2, . . .) ∈ I+|X0 = i )

Intuition: starting to look at some HMC from a stopping time =
reset counters to zero

B if T not a stopping time, risk to lose this property (cf TD).
B if MC not homogeneous, risk to lose this property (even if T
stopping time).
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Ni Luh Dewi Sintiari
Homogenity is important in MC

Ni Luh Dewi Sintiari
I+ is the sequence of trajectories in the future

Ni Luh Dewi Sintiari
In homogeneous MC, what's important is that what happens now does not deppend on the past, and does not depend on our current time n



Discrete time MC / First properties
Classification

Asymptotic behaviour

Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
“One step forward” method

“One step forward”: small step without strong Markov (I)

Example: probability Pi (τF <+∞) to reach a set F of states starting
from state i

Proposition

The values hi =Pi (τF <+∞) form the minimum positive solution
in R of the linear system:

{
hi = 1 for all i ∈ F

hi =∑
j∈E pi j h j for all i 6∈ F

Application: non biased walk over {0, . . . , N } where 0,N absorbing

0 1 NN−1i

1/2 1/2 1/2 1/2 1/2

1/21/21/21/21/2

1 1
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
“One step forward” method
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
“One step forward” method

“One step forward”: small step with strong Markov (II)

Example: Mean time Ei (τF ) to reach a set F of states starting from
state i

Proposition

The values ti = Ei (τF ) form the min positive solution in R∪ {∞} of
the linear system:

{
ti = 0 pour tout i ∈ F

ti = 1+∑
j 6∈F pi j t j pour tout i 6∈ F

Application: 1D non biased walk over {0, . . . , N } with F = {0, N }.

0 1 NN−1i

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/21/21/21/21/21/2
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
“One step forward” method

“One step forward”: big step with strong Markov

Example: law of nb of visits to state i given reaching probabilities,
for HMC (Xn).

Lemma (nb of visits to a state & probas of access between states)

Let Ni
def=∑+∞

n=1 1Xn=i nb of visits to i from time 1,

Let fi j
def=Pi (T j <∞) proba de reach j after leaving i ,

Then :

P j (Ni = n) =
{

f j i f n−1
i i (1− fi i ) if n ≥ 1

1− f j i if n = 0

Corollary (returns to the same state)

If fi i = 1, then Pi (Ni =∞) = 1 et Ei (Ni ) =+∞.
If fi i < 1, then Pi (Ni =∞) = 0 et Ei (Ni ) = fi i /(1− fi i ) <+∞.
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binary probability (cannot have a probability with value in (0,1))



Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Irreducibility: definitions

Definition (Communication in HMC)

Two states i et j communicate if there exist a path from i to j and a
path from j to i in the transition graph.

Proposition (Classes of communication)

Communication = equivalence relation partionning states into equiv
classes, called classes of communication (= strongly connected
components of the transition graph).

Definition (Irreducible HMC)

HMC is irreducible if it has only one class of communication (i.e.
strongly connected transition graph).

M1IF - ENS Lyon Performance Evaluation & Networks 14/30

Ni Luh Dewi Sintiari
(directed paths)



Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Irreducibility: structure

Proposition (Bags with no cycle)

Let G directed graph, with strongly connected components C1, . . . ,Cp ,
then its quotient graph (for strong connection relation) defined by
〈G〉 =G/C1/. . ./Cp (contraction of each component into one vertex)
is acyclic.

Definition (Closed/final/absorbing class)

Class of communication is closed/final/absorbing if all states
reachable from this class remain in this class (“maximal” strongly
connected comp. in the quotient graph).
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Irreducibility: example

B if nb ∞ of states, one may see ∞ classes or classes ∞.
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Irreducibility: example

composantes

fortement
connexes

B if nb ∞ of states, one may see ∞ classes or classes ∞.
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Irreducibility: example

quotient

graphe

B if nb ∞ of states, one may see ∞ classes or classes ∞.
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Irreducibility: example

closes/finales/terminales

classes

B if nb ∞ of states, one may see ∞ classes or classes ∞.
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Periodicity: definitions

Definition (Period of a state in HMC)

State i has period di
def= GCD{n ≥ 1|pi i (n) > 0} (i.e. GCD lengths of

cycles traversing i in the transition graph).

Proposition (Irreducibility & periodicity)

In a class of communication (strong. conn. comp.), all states have the
same period.

Definition (Period of an irreducible HMC)

. Period of irred HMC: period common to all its states
(= PGCD lengths of all cycles in transition graph.
. Aperiodic irred HMC: if period = 1.
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Periodicity: examples

Exercise: find the period of those graphs.

α β

γδ

a b

c

e

f

d

1 2 3 4

5 6 7 8

A B C

period = 1 period = 3 period = 1
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Invariance
Recurrence
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Periodicity: structure

Theorem (cycle of bags)

Let G strongly connected directed graph of period d, then there exists
a partition V0,...,Vd−1 of vertices such that any edge leaving Vp

reaches Vp+1 (with the convention Vd+1 =V0).

a b

c

e

f

d
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Periodicity: structure

Theorem (cycle of bags)

Let G strongly connected directed graph of period d, then there exists
a partition V0,...,Vd−1 of vertices such that any edge leaving Vp

reaches Vp+1 (with the convention Vd+1 =V0).

a b

c

e

f

d

V0

V1 V2
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Invariance: definitions

Framework: (Xn) HMC with transition matrix P .

Definition (Invariant/stationnary measure)

Invariant/stationnary measure for P: µ= (µi )i∈E ∈RE such that
µ≥ 0, µ 6= 0 and µP =µ, i.e. ∀i µi ≥ 0, ∃i µi 6= 0 and

∑
j µ j p j i =µi .

Definition (Invariant/stationnary probability distribution)

Inv./stat. distribution for P : invariant measure µ with
∑

i∈E µi<+∞.
In this case, renormalized π= (πi )i∈E with πi =µi /

∑
j∈E µ j is called

invariant/stationnary probability distribution (
∑

i∈E πi = 1).

Terminology: if law of Xn = invariant proba distrib, the process is
said to be “in stationnary regime”, “at equilibrium” ...
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Invariance: structure

Exercise: how many invariant proba distrib for an HMC ?

0 ?

, 0 1−1

1 1 1 1

1 ?

, 0 1

1/2

1/2

1/21/2

nb fini ≥ 2 ?

/ Impossible

∞ ?

, 0 1−11 1
1/2 1/2

Theorem (structure of invariant proba distrib)

The invariant proba distrib of an HMC form a convex polyhedron in
RE+: it is the convex hull of the invariant proba distrib of final classes
of communication.

M1IF - ENS Lyon Performance Evaluation & Networks 21/30



Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Invariance: structure

Exercise: how many invariant proba distrib for an HMC ?

0 , 0 1−1

1 1 1 1

1 ?

, 0 1

1/2

1/2

1/21/2

nb fini ≥ 2 ?

/ Impossible

∞ ?

, 0 1−11 1
1/2 1/2

Theorem (structure of invariant proba distrib)

The invariant proba distrib of an HMC form a convex polyhedron in
RE+: it is the convex hull of the invariant proba distrib of final classes
of communication.

M1IF - ENS Lyon Performance Evaluation & Networks 21/30



Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Invariance: structure

Exercise: how many invariant proba distrib for an HMC ?

0 , 0 1−1

1 1 1 1

1 , 0 1

1/2

1/2

1/21/2

nb fini ≥ 2 ?

/ Impossible

∞ ?

, 0 1−11 1
1/2 1/2

Theorem (structure of invariant proba distrib)

The invariant proba distrib of an HMC form a convex polyhedron in
RE+: it is the convex hull of the invariant proba distrib of final classes
of communication.

M1IF - ENS Lyon Performance Evaluation & Networks 21/30



Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Invariance: structure

Exercise: how many invariant proba distrib for an HMC ?

0 , 0 1−1

1 1 1 1

1 , 0 1

1/2

1/2

1/21/2

nb fini ≥ 2 / Impossible

∞ ?

, 0 1−11 1
1/2 1/2

Theorem (structure of invariant proba distrib)

The invariant proba distrib of an HMC form a convex polyhedron in
RE+: it is the convex hull of the invariant proba distrib of final classes
of communication.

M1IF - ENS Lyon Performance Evaluation & Networks 21/30



Discrete time MC / First properties
Classification
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Recurrence
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Ni Luh Dewi Sintiari
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Recurrence: definitions

Definition (transitory/recurrent null/positive state)

Let (Xn) HMC with values in E and Ti time to return to i ,

Ï state i transitory if Pi (Ti <+∞) < 1,

Ï state i recurrent if Pi (Ti <+∞) = 1,

Ï state i null recurrent if Pi (Ti <+∞) = 1 but Ei (Ti ) =+∞,

Ï state i positive recurrent if Ei (Ti ) <+∞ thus Pi (Ti <+∞) = 1.

Proposition (finite return time ⇔ infinite nb of visits)

state i recurrent ⇔ Pi (∞ nb of visits of i )=1 ⇔ Ei (nb of visits of i )=+∞
state i transitory ⇔ Pi (finite nb of visits of i )=1 ⇔ Ei (nb of visits of i )<+∞

Corollary (potential matrix criterium)

i recurrent iff
∑+∞

n=0 pi i (n) =+∞
M1IF - ENS Lyon Performance Evaluation & Networks 22/30

Ni Luh Dewi Sintiari
there is a positive proba that some day, we will leave the state forever

Ni Luh Dewi Sintiari
All MC that is reccurent is positive reccurent. The case of null recurrent can only happen when the #states is infinite.



Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Irreducibility & Recurrence

Proposition

In a class of communication (strong. conn. comp.) of an HMC, the
states are either all recurrent, or all transitory.
If the are recurrent, the class is closed and ∀ j , P(T j <+∞) = 1.

Corollary

An irreducible chain is either recurrent (all states are recurrent), or
transitory (all states are transitory).

Question: HMC irreducible ⇒ HMC recurrent ?

NO !
Contrex : 1D walk space homogeneous, recurrent iff p=1/2
(compute p00(n) explicitely then estimate

∑+∞
n=0 pi i (n) with Stirling)

Z 0 1 2−1−2

p

1−p

p pppp

1−p1−p1−p 1−p 1−p
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Invariance & Recurrence

Theorem (if irreducible, recurrence ⇒ invariant measure)

Let (Xn) HMC irred and recurrent, of transition matrice P,
Let state 0 fixed arbitrarily and T0 time to return to 0,

Let Vi
def=∑T0

n=1 1Xn=i nb of visits of i between time 0 (excluded) and

return time T0 (included), define xi
def= E0[Vi ] average nb of visits of i

between two visits of 0. Then:

1 0 < xi <∞ for all i ∈ E

2 (xi )i∈E invariant measure of P (canonical inv measure for 0)

3 P admits an unique invariant measure up to a constant factor

B HMC irreducible, with invariant measure ⇒ HMC recurrent ?

NO ! look again 1D space homogeneous random walk, p 6= 1/2, they
admit 1 = (. . . ,1,1,1, . . .) as invariant measure
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Invariance & Positive recurrence

Theorem (if irreducible, positive recurrence ⇔ inv proba distrib)

Let (Xn) HMC irred, of transition matrix P, we have the equivalence:

1 (Xn) admits a positive recurrent state,

2 (Xn) has all its states positive recurrent,

3 (Xn) admits an invariant proba distribution.

In this case, the invariant proba distrib π= (πi ) is unique and
satisfies πi = 1/Ei (Ti ) > 0 where Ti time to return to i . The chain is
called positive recurrent.

Ex of HMC irred recurrent but not positive recurrent ?

YES, e.g.
symmetric random walk over Z !
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\pi_i is the time spent in state_i.
If Ei(Ti) is large, i.e. the average time needed to go back to state_i is large, then \pi_i is small (bcs we spend less time in state_i).
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Invariance
Recurrence

Invariance & Positive recurrence

Theorem (if irreducible, positive recurrence ⇔ inv proba distrib)

Let (Xn) HMC irred, of transition matrix P, we have the equivalence:

1 (Xn) admits a positive recurrent state,

2 (Xn) has all its states positive recurrent,

3 (Xn) admits an invariant proba distribution.

In this case, the invariant proba distrib π= (πi ) is unique and
satisfies πi = 1/Ei (Ti ) > 0 where Ti time to return to i . The chain is
called positive recurrent.
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Irreducibility
Periodicity
Invariance
Recurrence

Special case: HMC with finite nb of states

Proposition

any finite state irreducible HMC is positive recurrent.

Theorem (Perron 1907 - Frobenius 1912)

Let P transition matrix of irred HMC, with N states, with period d,
with sorted complex eigenvalues |λ1| ≥ . . . ≥ |λN | then

1 λ1 = 1 eigenvalue of P,

2 complex unit roots λ1 =ω0,λ2 =ω1,...,λd =ωd−1 où ω= e2πi /d ,
are eigenvalues of P,

3 other eigenvalues λd+1,...,λN satisfy |λ j | < 1.

Corollary (irred and aperiodic HMC)

P n = 1Tπ+O(nm2−1|λ2|n) where m2 multiplicity of λ2 (|λ2| < 1)
M1IF - ENS Lyon Performance Evaluation & Networks 26/30
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\pi is the invariant distribution
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Convergence
Ergodicity
Periodic case
Non irreducible case

Asymptotic convergence:

Theorem (Convergence in law for HMC)

Let (Xn) HMC irreducible, positive recurrent, aperiodic, of
transition matrix P and stationary distribution π. Then for any
initial distribution ν, for any state i ,

lim
n→+∞P(Xn = i ) =πi

More precisely, lim
n→+∞||νP n −π||∞ = 0.

A classical proof: by coupling Markov chains
B Essential hypothesis: period = 1.
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Ni Luh Dewi Sintiari
This theorem gives information about the asymptotic behavior of the Markov Chain

Ni Luh Dewi Sintiari
stationary = invariant

Ni Luh Dewi Sintiari
this is stronger than the one above
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Convergence
Ergodicity
Periodic case
Non irreducible case

Ergodic theorem for HMC

Theorem (Ergodicity for HMC)

Let (Xn) HMC with values in E, irred, positive recurrent of invariant
distrib π, and let f : E →R such that

∑
i∈E | f (i )|πi <∞, then for any

initial law ν, almost surely,

lim
n→∞

1

n

n∑
k=1

f (Xk ) = ∑
i∈E

f (i )πi
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Ni Luh Dewi Sintiari


Ni Luh Dewi Sintiari


Ni Luh Dewi Sintiari
"intuitively", on the left hand side, we kind of make a statistic



Discrete time MC / First properties
Classification

Asymptotic behaviour

Convergence
Ergodicity
Periodic case
Non irreducible case

Periodic irreducible case

Question: dealing with irred HMC of period d ≥ 2 ?

Reductions: return to aperiodic case with I+P+···+P d−1

d or P d

B loosing irred

Theorem (Convergence - periodic case)

Let (Xn) HMC irreducible, positive recurrent, of period d, with
transition matrix P, let V0, . . . ,Vd−1 the bag cycle partition. Then for
any initial distribution ν, for all 0 ≤ r ≤ d −1, for any state i ∈Vr ,

lim
n→+∞P(Xnd+r = i ) = d/Ei (Ti )

More precisely, limn→+∞ ||νP nd+r −d/Ei (Ti )||∞ = 0
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Discrete time MC / First properties
Classification

Asymptotic behaviour

Convergence
Ergodicity
Periodic case
Non irreducible case

Non irreducible case

Asymptotic study of the general case

Ï Study the transition graph structure and identify final classes

Ï Study the absorption probabilities of each final class

Ï Study the asymptotic behaviour in each final class (period,
recurrence, invariant distribution ...)
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