Performance Evaluation and Networks

Discrete time Markov Chains (MC)

Definition

Chapman-Kolmogorov Stopping time / Strong Markov property "One step forward" method

Discrete time Markov Chain (MC): definition

Process $(X_n)_{n\in\mathbb{N}}$ where X_n r.v. over $(\Omega, \mathcal{F}, \mathbb{P})$, with values in E.

Definition (Markov Chain: MC)

$$(X_n)$$
 markovian if $\forall n \in \mathbb{N}, \ \forall x_0, ..., x_n, x_{n+1} \in E$ (space of states),
 $\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_0 = x_0) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n)$
subject to $\mathbb{P}(X_n = x_n, ..., X_0 = x_0) \neq 0$.

Discrete time Markov Chain (MC): definition

Process $(X_n)_{n\in\mathbb{N}}$ where X_n r.v. over $(\Omega, \mathcal{F}, \mathbb{P})$, with values in E.

Definition (Markov Chain: MC)

$$(X_n)$$
 markovian if $\forall n \in \mathbb{N}, \forall x_0, ..., x_n, x_{n+1} \in E$ (space of states),
 $\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_0 = x_0) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n)$
subject to $\mathbb{P}(X_n = x_n, ..., X_0 = x_0) \neq 0$.

All r.v. X_n are defined over the same probabilistic space $(\Omega, \mathcal{F}, \mathbb{P})$ with values in the same space $E \to \text{each realization } \omega \in \Omega$ yields a trajectory $X_0(\omega), X_1(\omega), X_2(\omega), \ldots$ within E.

Discrete time Markov Chain (MC): definition

Process $(X_n)_{n\in\mathbb{N}}$ where X_n r.v. over $(\Omega, \mathcal{F}, \mathbb{P})$, with values in E.

Definition (Markov Chain: MC)

$$(X_n)$$
 markovian if $\forall n \in \mathbb{N}, \forall x_0, ..., x_n, x_{n+1} \in E$ (space of states),
 $\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_0 = x_0) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n)$
subject to $\mathbb{P}(X_n = x_n, ..., X_0 = x_0) \neq 0$.

♠ Convention for conditional probas

All formulas from the course with conditional probas are valid only if well defined: $\mathbb{P}(A|B)$ well defined if $\mathbb{P}(B) \neq 0$.

With this convention, the note "subject to ..." will be omitted for now, but stay alert in practice.

Definition Chapman-Kolmogorov Stopping time / Strong Markov property "One step forward" method

Discrete time Markov Chain (MC): definition

Process $(X_n)_{n\in\mathbb{N}}$ where X_n r.v. over $(\Omega, \mathscr{F}, \mathbb{P})$, with values in E.

Definition (Markov Chain: MC)

$$(X_n)$$
 markovian if $\forall n \in \mathbb{N}, \forall x_0, ..., x_n, x_{n+1} \in E$ (space of states),
 $\mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n, ..., X_0 = x_0) = \mathbb{P}(X_{n+1} = x_{n+1} | X_n = x_n)$
subject to $\mathbb{P}(X_n = x_n, ..., X_0 = x_0) \neq 0$.

Intuition: "future only depends on present", "memoryless", ...

Definition (Time Homogeneous MC: HMC)

$$(X_n)$$
 homogeneous if $\forall n \in \mathbb{N}, \forall i, j \in E, \mathbb{P}(X_{n+1} = j | X_n = i) = \mathbb{P}(X_1 = j | X_0 = i)$

Definition (Transition matrix & graph of Homogeneous MC)

- *Transition matrix*: $P = (p_{ij})_{i,j \in E}$ with $p_{ij} = \mathbb{P}(X_1 = j | X_0 = i)$
- ightharpoonup Transition graph: vertices = E, edge i j if $p_{ij} > 0$ (weight p_{ij})

Definition Chapman-Kolmogo

Chapman-Kolmogorov Stopping time / Strong Markov property "One step forward" method

Discrete Time Markov Chain (MC): examples?

"One step forward" method

Discrete Time Markov Chain (MC): examples

- ▶ Jeu de l'oie / Snakes and ladders
- ► Sequence of i.i.d. r.v. for any law over *E*.
- ▶ Uniform random walk over \mathbb{N}^d or \mathbb{Z}^d .
- Some randomized algorithms, e.g. in system/network protocols.

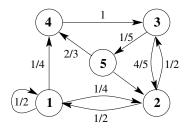
Proposition (Characteristic example)

Let $(U_n)_{n \in \mathbb{N}^*}$ i.i.d. sequence of r.v. with values in F, E finite or countable space, f map $E \times F \to E$, X_0 r.v. with values in E and independent of the sequence (U_n) , then the recurrence equation $X_{n+1} = f(X_n, U_{n+1})$ define an homogeneous MC with values in E.

Transition matrix & graph

P = stochastic matrix:

- positive coeff: $\forall i, j, p_{ij} \ge 0$
- \sum over line = 1 : $\forall i$, $\sum_{j} p_{ij} = 1$



MC = "random walk":

realization $x_0(\omega), x_1(\omega), x_2(\omega), x_3(\omega), x_4(\omega), x_5(\omega), ...$: walk in the transition graph

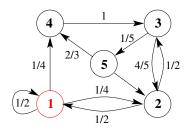
Important Notation: let $i \in E$, $\mathbb{P}_i(A) \stackrel{\text{def}}{=} \mathbb{P}(A|X_0 = i)$ for event A $\mathbb{E}_i(Z) \stackrel{\text{def}}{=} \mathbb{E}(Z|X_0 = i) = \sum_{z} z \cdot \mathbb{P}(Z = z|X_0 = i)$ for real r.v. Z ($\sum \text{ou} \int$)

"One step forward" method

Transition matrix & graph

P =stochastic matrix:

- positive coeff: $\forall i, j, p_{ij} \ge 0$
- \sum over line = 1 : $\forall i$, $\sum_{j} p_{ij} = 1$



MC = "random walk":

realization $x_0(\omega), x_1(\omega), x_2(\omega), x_3(\omega), x_4(\omega), x_5(\omega),...$: walk in the transition graph

Important Notation: let $i \in E$, $\mathbb{P}_i(A) \stackrel{\text{def}}{=} \mathbb{P}(A|X_0 = i)$ for event $A \in \mathbb{E}_i(Z) \stackrel{\text{def}}{=} \mathbb{E}(Z|X_0 = i) = \sum_{z} z \cdot \mathbb{P}(Z = z|X_0 = i)$ for real r.v. $Z (\sum \text{ou} \int)$

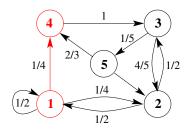
Definition Chapman-

Chapman-Kolmogorov Stopping time / Strong Markov property "One step forward" method

Transition matrix & graph

P =stochastic matrix:

- positive coeff: $\forall i, j, p_{ij} \ge 0$
- \sum over line = 1 : $\forall i$, $\sum_{j} p_{ij} = 1$



MC = "random walk":

realization $x_0(\omega), x_1(\omega), x_2(\omega), x_3(\omega), x_4(\omega), x_5(\omega), ...$: walk in the transition graph

Important Notation: let
$$i \in E$$
, $\mathbb{P}_i(A) \stackrel{\text{def}}{=} \mathbb{P}(A|X_0 = i)$ for event A $\mathbb{E}_i(Z) \stackrel{\text{def}}{=} \mathbb{E}(Z|X_0 = i) = \sum_{z} z \cdot \mathbb{P}(Z = z|X_0 = i)$ for real r.v. Z ($\sum \text{ou} \int$)

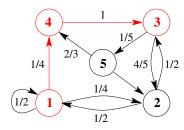
Definition Chanman-

Chapman-Kolmogorov Stopping time / Strong Markov property "One step forward" method

Transition matrix & graph

P = stochastic matrix:

- positive coeff: $\forall i, j, p_{ij} \ge 0$
- \sum over line = 1 : $\forall i$, $\sum_{j} p_{ij} = 1$



MC = "random walk" :

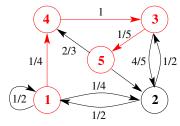
realization $x_0(\omega), x_1(\omega), x_2(\omega), x_3(\omega), x_4(\omega), x_5(\omega),...$: walk in the transition graph

Important Notation: let $i \in E$, $\mathbb{P}_i(A) \stackrel{\text{def}}{=} \mathbb{P}(A|X_0 = i)$ for event $A \in \mathbb{E}_i(Z) \stackrel{\text{def}}{=} \mathbb{E}(Z|X_0 = i) = \sum_{z} z \cdot \mathbb{P}(Z = z|X_0 = i)$ for real r.v. $Z (\sum \text{ou} \int)$

Transition matrix & graph

P =stochastic matrix:

- positive coeff: $\forall i, j, p_{ij} \ge 0$
- \sum over line = 1 : $\forall i$, $\sum_{j} p_{ij} = 1$



MC = "random walk" :

realization $x_0(\omega), x_1(\omega), x_2(\omega), x_3(\omega), x_4(\omega), x_5(\omega),...$: walk in the transition graph

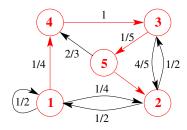
Important Notation: let $i \in E$, $\mathbb{P}_i(A) \stackrel{\text{def}}{=} \mathbb{P}(A|X_0 = i)$ for event $A \in \mathbb{E}_i(Z) \stackrel{\text{def}}{=} \mathbb{E}(Z|X_0 = i) = \sum_{z} z \cdot \mathbb{P}(Z = z|X_0 = i)$ for real r.v. $Z (\sum \text{ou} \int)$

"One step forward" method

Transition matrix & graph

P =stochastic matrix:

- positive coeff: $\forall i, j, p_{ij} \ge 0$
- \sum over line = 1 : $\forall i$, $\sum_{j} p_{ij} = 1$



MC = "random walk": realization $x_0(\omega), x_1(\omega), x_2(\omega), x_3(\omega), x_4(\omega), x_5(\omega), \dots$:

walk in the transition graph

Important Notation: let $i \in E$, $\mathbb{P}_i(A) \stackrel{\text{def}}{=} \mathbb{P}(A|X_0 = i)$ for event $A \in \mathbb{E}_i(Z) \stackrel{\text{def}}{=} \mathbb{E}(Z|X_0 = i) = \sum_{z} z \cdot \mathbb{P}(Z = z|X_0 = i)$ for real r.v. $Z \in \mathbb{E}[X_0 = i]$

Markov property in practice

Theorem ("General" Markov property)

Let (X_n) MC with values in E, at time $n \in \mathbb{N}$ in state $i \in E$, let $I^+ \in \mathcal{P}(E)^{\otimes \mathbb{N}}$ a set of trajectories in the future, let $I^- \in \mathcal{P}(E^n)$ a set of trajectories in the past,

$$\mathbb{P}((X_{n+1},X_{n+2},\ldots)\in I^+|(X_0,\ldots,X_{n-1})\in I^-,X_n=i)=\mathbb{P}((X_{n+1},X_{n+2},\ldots)\in I^+|X_n=i)$$

And if homogeneous MC, this term is: $= \mathbb{P}((X_1, X_2,...) \in I^+ | X_0 = i)$

English formulation: $\forall i \in E, \forall n \in \mathbb{N}$, the future at time n and the past at time n are conditionally independent given the present state $X_n = i$.

Examples of use:

$$\mathbb{P}(X_{10} = a, X_7 = b | X_5 = c, X_3 = d, X_2 = e) = \mathbb{P}(X_{10} = a, X_7 = b | X_5 = c)$$

$$\mathbb{P}(\forall n \ge 11, X_n \notin \{a, b\} | X_{10} = c, \forall n \le 9, X_n \in \{d, e\}) = \mathbb{P}(\forall n \ge 11, X_n \notin \{a, b\} | X_{10} = c)$$

Chapman-Kolmogorov Equations (I)

Notation: $p_{ij}(r, r+s) \stackrel{\text{def}}{=} \mathbb{P}(X_{r+s}=j|X_r=i) \text{ for } i, j \in E, r, s \in \mathbb{N}.$

Theorem (Chapman-Kolmogorov)

Any $MC(X_n)_{n\in\mathbb{N}}$ satisfies the equations: $\forall i, j, k \in E, \forall r, s, t \in \mathbb{N}$, $p_{ij}(r, r+s+t) = \sum_k p_{ik}(r, r+s) p_{kj}(r+s, r+s+t)$

Corollary (Matrix version)

Given matrices $P(r, r + s) \stackrel{\text{def}}{=} (p_{ij}(r, r + s))_{i,j \in E}$, then $\forall r, s, t \in \mathbb{N}$, P(r, r + s + t) = P(r, r + s)P(r + s, r + s + t)

Corollary (Homogeneous case)

If HMC, proba to jump from i to j in n steps = coeff i, j of P^n denoted $p_{ij}(n)$.

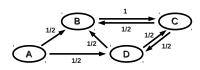
Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
"One step forward" method

Chapman-Kolmogorov Equations (II)

Vector notation of the law v of r.v. X with values in E:

$$v = (v_i)_{i \in E}$$
 line vector with $v_i \stackrel{\text{def}}{=} \mathbb{P}(X = i)$

Corollary (Homogeneous case)

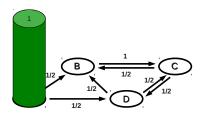


Chapman-Kolmogorov Equations (II)

Vector notation of the law v of r.v. X with values in E:

 $v = (v_i)_{i \in E}$ line vector with $v_i \stackrel{\text{def}}{=} \mathbb{P}(X = i)$

Corollary (Homogeneous case)



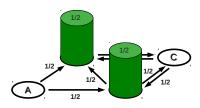
Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
"One step forward" method

Chapman-Kolmogorov Equations (II)

Vector notation of the law v of r.v. X with values in E:

$$v = (v_i)_{i \in E}$$
 line vector with $v_i \stackrel{\text{def}}{=} \mathbb{P}(X = i)$

Corollary (Homogeneous case)

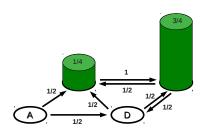


Chapman-Kolmogorov Equations (II)

Vector notation of the law v of r.v. X with values in E:

 $v = (v_i)_{i \in E}$ line vector with $v_i \stackrel{\text{def}}{=} \mathbb{P}(X = i)$

Corollary (Homogeneous case)



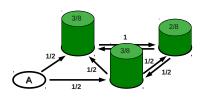
Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
"One step forward" method

Chapman-Kolmogorov Equations (II)

Vector notation of the law v of r.v. X with values in E:

$$v = (v_i)_{i \in E}$$
 line vector with $v_i \stackrel{\text{def}}{=} \mathbb{P}(X = i)$

Corollary (Homogeneous case)



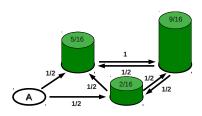
Definition
Chapman-Kolmogorov
Stopping time / Strong Markov property
"One step forward" method

Chapman-Kolmogorov Equations (II)

Vector notation of the law v of r.v. X with values in E:

 $v = (v_i)_{i \in E}$ line vector with $v_i \stackrel{\text{def}}{=} \mathbb{P}(X = i)$

Corollary (Homogeneous case)



Definition (Stopping time of a stochastic process)

Stopping time T of stoch proc $(X_n)_{n \in \mathbb{N}}$: r.v. with values in $\mathbb{N} \cup \{+\infty\}$ s.t. $\forall n \in \mathbb{N}$, event $\{T = n\}$ can be described using X_0, \ldots, X_n : $\{T = n\} = \{(X_0, \ldots, X_n) \in I\}$ for a set of trajectories $I \subseteq E^{n+1}$.

Intuition: time event which can be expressed with no reference to the future.

- ► Time to reach $F : \tau_F = \inf\{n \ge 0 | X_n \in F\}$?
- ► Time to come back to $F: T_F = \inf\{n \ge 1 | X_n \in F\}$?
- Last time in $F: L_F = \sup\{n \ge 0 | X_n \in F\}$?

Definition (Stopping time of a stochastic process)

Stopping time T of stoch proc $(X_n)_{n \in \mathbb{N}}$: r.v. with values in $\mathbb{N} \cup \{+\infty\}$ s.t. $\forall n \in \mathbb{N}$, event $\{T = n\}$ can be described using $X_0, ..., X_n$: $\{T = n\} = \{(X_0, ..., X_n) \in I\}$ for a set of trajectories $I \subseteq E^{n+1}$.

Intuition: time event which can be expressed with no reference to the future.

- ► Time to reach $F : \tau_F = \inf\{n \ge 0 | X_n \in F\}$ ©
- ► Time to come back to $F: T_F = \inf\{n \ge 1 | X_n \in F\}$?
- ► Last time in $F: L_F = \sup\{n \ge 0 | X_n \in F\}$?

Definition (Stopping time of a stochastic process)

Stopping time T of stoch proc $(X_n)_{n \in \mathbb{N}}$: r.v. with values in $\mathbb{N} \cup \{+\infty\}$ s.t. $\forall n \in \mathbb{N}$, event $\{T = n\}$ can be described using $X_0, ..., X_n$: $\{T = n\} = \{(X_0, ..., X_n) \in I\}$ for a set of trajectories $I \subseteq E^{n+1}$.

Intuition: time event which can be expressed with no reference to the future.

- ► Time to reach $F : \tau_F = \inf\{n \ge 0 | X_n \in F\}$ ©
- ► Time to come back to $F: T_F = \inf\{n \ge 1 | X_n \in F\}$ ©
- Last time in $F: L_F = \sup\{n \ge 0 | X_n \in F\}$?

Definition (Stopping time of a stochastic process)

Stopping time T of stoch proc $(X_n)_{n \in \mathbb{N}}$: r.v. with values in $\mathbb{N} \cup \{+\infty\}$ s.t. $\forall n \in \mathbb{N}$, event $\{T = n\}$ can be described using X_0, \ldots, X_n : $\{T = n\} = \{(X_0, \ldots, X_n) \in I\}$ for a set of trajectories $I \subseteq E^{n+1}$.

Intuition: time event which can be expressed with no reference to the future.

- ► Time to reach $F : \tau_F = \inf\{n \ge 0 | X_n \in F\}$ ①
- ► Time to come back to $F: T_F = \inf\{n \ge 1 | X_n \in F\}$ ©
- ► Last time in $F: L_F = \sup\{n \ge 0 | X_n \in F\}$ ③

Definition (Stopping time of a stochastic process)

Stopping time T of stoch proc $(X_n)_{n \in \mathbb{N}}$: r.v. with values in $\mathbb{N} \cup \{+\infty\}$ s.t. $\forall n \in \mathbb{N}$, event $\{T = n\}$ can be described using X_0, \ldots, X_n : $\{T = n\} = \{(X_0, \ldots, X_n) \in I\}$ for a set of trajectories $I \subseteq E^{n+1}$.

Intuition: time event which can be expressed with no reference to the future.

Examples: let (X_n) MC with values in E and $F \subseteq E$,

- ► Time to reach $F : \tau_F = \inf\{n \ge 0 | X_n \in F\}$ ©
- ► Time to come back to $F: T_F = \inf\{n \ge 1 | X_n \in F\}$ ©
- Last time in $F: L_F = \sup\{n \ge 0 | X_n \in F\}$ ☺

Special notation: for $i \in E$, $T_i \stackrel{\text{def}}{=} T_{\{i\}}$ and $\tau_i \stackrel{\text{def}}{=} \tau_{\{i\}}$.

Stopping time: quick exercise

Exercise: let T, T_1 , T_2 stopping times for (X_n) , tell whether the next r.v. are also stopping times for (X_n) ?

- a constant r.v. c
- ② T + c where $c \in \mathbb{N}^*$ fixed
- **3** T c where $c ∈ \mathbb{N}^*$ fixed
- \bigcirc min(T_1, T_2)
- **1** $\max(T_1, T_2)$
- **③** $N(t) = \max\{n \in \mathbb{N} | X_0 + X_1 + ... + X_n \le t\}$ (*X_n* positive r.v.)
- 0 N(t) + 1

Strong Markov property: regeneration

Theorem (Strong Markov property)

- Let T stopping time for $HMC(X_n)$, then subject to $T < +\infty$ and $X_T = i$, $(X_{T+n})_{n \ge 0}$ is markovian and independent of X_0, \ldots, X_T (also denoted $(X_{T \land n})_{n \ge 0}$ où $\land = \min$).
- Moreover, for any event A described with $X_0, ..., X_T$ and $I^+ \in \mathscr{P}(E)^{\otimes \mathbb{N}}$

$$\mathbb{P}((X_{T+1}, X_{T+2}, \ldots) \in I^+ | X_T = i, T < +\infty, A) = \mathbb{P}((X_1, X_2, \ldots) \in I^+ | X_0 = i)$$

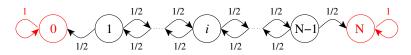
Intuition: starting to look at some HMC from a stopping time = reset counters to zero

 \wedge if T not a stopping time, risk to lose this property (cf TD). \wedge if MC not homogeneous, risk to lose this property (even if T stopping time).

"One step forward": small step without strong Markov (I)

Example: probability $\mathbb{P}_i(\tau_F < +\infty)$ to reach a set F of states starting from state i

Application: non biased walk over $\{0, ..., N\}$ where 0, N absorbing



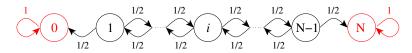
"One step forward": small step without strong Markov (I)

Example: probability $\mathbb{P}_i(\tau_F < +\infty)$ to reach a set F of states starting from state i

Proposition

The values $h_i = \mathbb{P}_i(\tau_F < +\infty)$ form the minimum positive solution in \mathbb{R} of the linear system: $\begin{cases} h_i = 1 & \text{for all } i \in F \\ h_i = \sum_{j \in E} p_{ij} h_j & \text{for all } i \notin F \end{cases}$

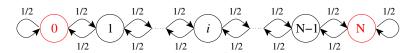
Application: non biased walk over $\{0, ..., N\}$ where 0, N absorbing



"One step forward": small step with strong Markov (II)

Example: Mean time $\mathbb{E}_i(\tau_F)$ to reach a set F of states starting from state i

Application: 1D non biased walk over $\{0, ..., N\}$ with $F = \{0, N\}$.



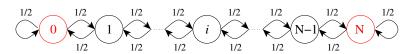
"One step forward": small step with strong Markov (II)

Example: Mean time $\mathbb{E}_i(\tau_F)$ to reach a set F of states starting from state i

Proposition

The values $t_i = \mathbb{E}_i(\tau_F)$ form the min positive solution in $\mathbb{R} \cup \{\infty\}$ of the linear system: $\begin{cases} t_i = 0 & pour \ tout \ i \in F \\ t_i = 1 + \sum_{j \notin F} p_{ij} t_j & pour \ tout \ i \notin F \end{cases}$

Application: 1D non biased walk over $\{0, ..., N\}$ with $F = \{0, N\}$.



"One step forward": big step with strong Markov

Example: law of nb of visits to state i given reaching probabilities, for HMC (X_n) .

Lemma (nb of visits to a state & probas of access between states)

Let $N_i \stackrel{\text{def}}{=} \sum_{n=1}^{+\infty} \mathbb{1}_{X_n=i}$ nb of visits to i from time 1, Let $f_{ij} \stackrel{\text{def}}{=} \mathbb{P}_i(T_j < \infty)$ proba de reach j after leaving i, Then:

$$\mathbb{P}_{j}(N_{i} = n) = \begin{cases} f_{ji} f_{ii}^{n-1} (1 - f_{ii}) & \text{if } n \ge 1 \\ 1 - f_{ji} & \text{if } n = 0 \end{cases}$$

Corollary (returns to the same state)

If
$$f_{ii} = 1$$
, then $\mathbb{P}_i(N_i = \infty) = 1$ et $\mathbb{E}_i(N_i) = +\infty$.
If $f_{ii} < 1$, then $\mathbb{P}_i(N_i = \infty) = 0$ et $\mathbb{E}_i(N_i) = f_{ii}/(1 - f_{ii}) < +\infty$.

Irreducibility: definitions

Definition (Communication in HMC)

Two states i et j communicate if there exist a path from i to j and a path from j to i in the transition graph.

Proposition (Classes of communication)

Communication = equivalence relation partionning states into equiv classes, called classes of communication (= strongly connected components of the transition graph).

Definition (Irreducible HMC)

HMC is *irreducible* if it has only one class of communication (i.e. strongly connected transition graph).

Irreducibility: structure

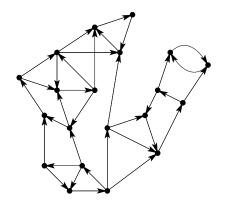
Proposition (Bags with no cycle)

Let G directed graph, with strongly connected components C_1, \ldots, C_p , then its quotient graph (for strong connection relation) defined by $\langle G \rangle = G/C_1/\ldots/C_p$ (contraction of each component into one vertex) is acyclic.

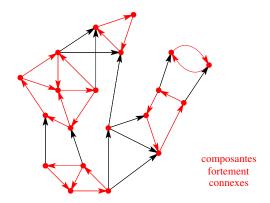
Definition (Closed/final/absorbing class)

Class of communication is closed/final/absorbing if all states reachable from this class remain in this class ("maximal" strongly connected comp. in the quotient graph).

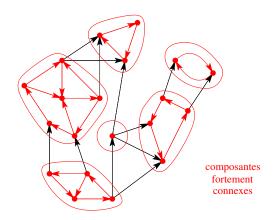
Irreducibility: example



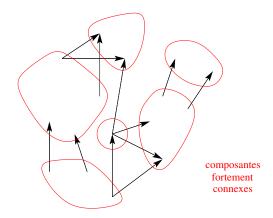
 \wedge if nb ∞ of states, one may see ∞ classes or classes ∞ .



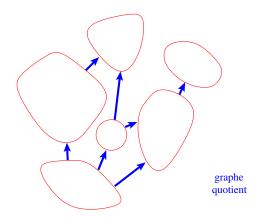
 \wedge if nb ∞ of states, one may see ∞ classes or classes ∞ .



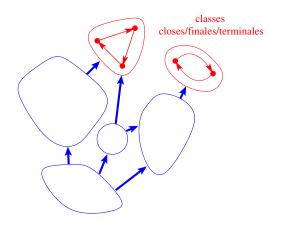
 \wedge if nb ∞ of states, one may see ∞ classes or classes ∞ .



 \bigwedge if nb ∞ of states, one may see ∞ classes or classes ∞ .



 \wedge if nb ∞ of states, one may see ∞ classes or classes ∞ .



 \wedge if nb ∞ of states, one may see ∞ classes or classes ∞ .

Periodicity: definitions

Definition (Period of a state in HMC)

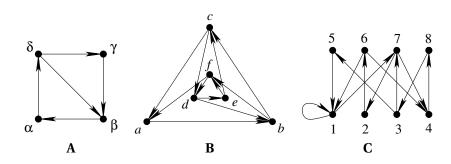
State i has period $d_i \stackrel{\text{def}}{=} \text{GCD}\{n \ge 1 | p_{ii}(n) > 0\}$ (i.e. GCD lengths of cycles traversing i in the transition graph).

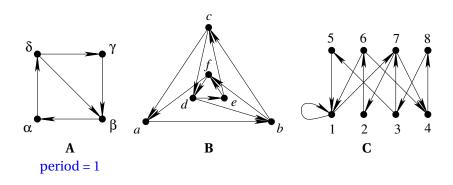
Proposition (Irreducibility & periodicity)

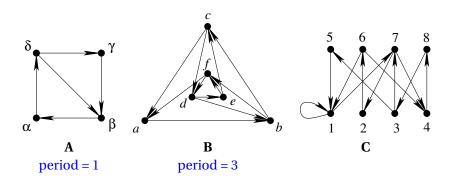
In a class of communication (strong. conn. comp.), all states have the same period.

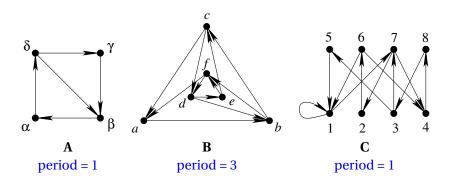
Definition (Period of an irreducible HMC)

- ▶ Period of irred HMC: period common to all its states
- (= PGCD lengths of all cycles in transition graph.
- ightharpoonup Aperiodic irred HMC: if period = 1.









Periodicity: structure

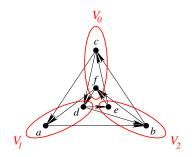
Theorem (cycle of bags)

Let G strongly connected directed graph of period d, then there exists a partition $V_0,...,V_{d-1}$ of vertices such that any edge leaving V_p reaches V_{p+1} (with the convention $V_{d+1} = V_0$).

Periodicity: structure

Theorem (cycle of bags)

Let G strongly connected directed graph of period d, then there exists a partition $V_0,...,V_{d-1}$ of vertices such that any edge leaving V_p reaches V_{p+1} (with the convention $V_{d+1} = V_0$).



Invariance: definitions

Framework: (X_n) HMC with transition matrix P.

Definition (Invariant/stationnary measure)

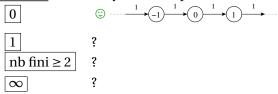
Invariant/stationnary measure for $P: \mu = (\mu_i)_{i \in E} \in \mathbb{R}^E$ such that $\mu \ge 0$, $\mu \ne 0$ and $\mu P = \mu$, i.e. $\forall i \ \mu_i \ge 0$, $\exists i \ \mu_i \ne 0$ and $\sum_j \mu_j p_{ji} = \mu_i$.

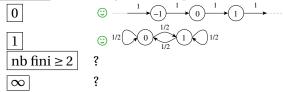
Definition (Invariant/stationnary probability distribution)

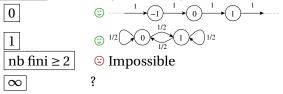
Inv./stat. distribution for P: invariant measure μ with $\sum_{i \in E} \mu_i < +\infty$. In this case, renormalized $\pi = (\pi_i)_{i \in E}$ with $\pi_i = \mu_i / \sum_{j \in E} \mu_j$ is called invariant/stationnary probability distribution ($\sum_{i \in E} \pi_i = 1$).

Terminology: if law of X_n = invariant proba distrib, the process is said to be "in stationnary regime", "at equilibrium" ...

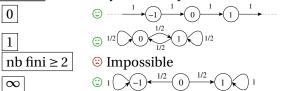
0	;
1	;
nb fini ≥ 2	•
∞	3







Exercise: how many invariant proba distrib for an HMC?



Theorem (structure of invariant proba distrib)

The invariant proba distrib of an HMC form a convex polyhedron in \mathbb{R}_+^E : it is the convex hull of the invariant proba distrib of final classes of communication.

Recurrence: definitions

Definition (transitory/recurrent null/positive state)

Let (X_n) HMC with values in E and T_i time to return to i,

- state i transitory if $\mathbb{P}_i(T_i < +\infty) < 1$,
- state i recurrent if $\mathbb{P}_i(T_i < +\infty) = 1$,
- ▶ state i null recurrent if $\mathbb{P}_i(T_i < +\infty) = 1$ but $\mathbb{E}_i(T_i) = +\infty$,
- ▶ state i positive recurrent if $\mathbb{E}_i(T_i) < +\infty$ thus $\mathbb{P}_i(T_i < +\infty) = 1$.

Proposition (finite return time ⇔ infinite nb of visits)

 $state \ i \ recurrent \Leftrightarrow \ \mathbb{P}_i(\infty \ nb \ of \ visits \ of \ i) = 1 \ \Leftrightarrow \mathbb{E}_i(nb \ of \ visits \ of \ i) = +\infty$ $state \ i \ transitory \Leftrightarrow \mathbb{P}_i(finite \ nb \ of \ visits \ of \ i) = 1 \Leftrightarrow \mathbb{E}_i(nb \ of \ visits \ of \ i) < +\infty$

Corollary (potential matrix criterium)

i recurrent iff
$$\sum_{n=0}^{+\infty} p_{ii}(n) = +\infty$$

Irreducibility & Recurrence

Proposition

In a class of communication (strong. conn. comp.) of an HMC, the states are either all recurrent, or all transitory. If the are recurrent, the class is closed and $\forall j$, $\mathbb{P}(T_j < +\infty) = 1$.

Corollary

An irreducible chain is either recurrent (all states are recurrent), or transitory (all states are transitory).

Question: HMC irreducible ⇒ HMC recurrent?

Irreducibility & Recurrence

Proposition

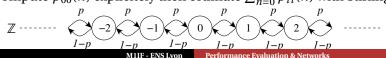
In a class of communication (strong. conn. comp.) of an HMC, the states are either all recurrent, or all transitory. If the are recurrent, the class is closed and $\forall j$, $\mathbb{P}(T_j < +\infty) = 1$.

Corollary

An irreducible chain is either recurrent (all states are recurrent), or transitory (all states are transitory).

Question: HMC irreducible ⇒ HMC recurrent ? NO!

Contrex: 1D walk space homogeneous, recurrent iff p = 1/2 (compute $p_{00}(n)$ explicitely then estimate $\sum_{n=0}^{+\infty} p_{ii}(n)$ with Stirling)



23/30

Invariance & Recurrence

Theorem (if irreducible, recurrence ⇒ invariant measure)

Let (X_n) HMC irred and recurrent, of transition matrice P, Let state 0 fixed arbitrarily and T_0 time to return to 0, Let $V_i \stackrel{\text{def}}{=} \sum_{n=1}^{T_0} \mathbb{1}_{X_n=i}$ nb of visits of i between time 0 (excluded) and return time T_0 (included), define $x_i \stackrel{\text{def}}{=} \mathbb{E}_0[V_i]$ average nb of visits of ibetween two visits of 0. Then:

- $0 < x_i < \infty$ for all $i \in E$
- ② $(x_i)_{i \in E}$ invariant measure of P (canonical inv measure for 0)
- **1** P admits an unique invariant measure up to a constant factor

 \wedge HMC irreducible, with invariant measure \Rightarrow HMC recurrent?

return time T_0 (included), define $x_i \stackrel{\text{def}}{=} \mathbb{E}_0[V_i]$ average nb of visits of i between two visits of 0. Then:

- ② $(x_i)_{i \in E}$ invariant measure of P (canonical inv measure for 0)
- P admits an unique invariant measure up to a constant factor

⚠ HMC irreducible, with invariant measure \Rightarrow HMC recurrent? NO! look again 1D space homogeneous random walk, $p \neq 1/2$, they admit $\mathbf{1} = (..., 1, 1, 1, ...)$ as invariant measure

Invariance & Positive recurrence

Theorem (if irreducible, positive recurrence ⇔ inv proba distrib)

Let (X_n) HMC irred, of transition matrix P, we have the equivalence:

- **1** (X_n) admits a positive recurrent state,
- (X_n) has all its states positive recurrent,
- **3** (X_n) admits an invariant proba distribution.

In this case, the invariant proba distrib $\pi = (\pi_i)$ is unique and satisfies $\pi_i = 1/\mathbb{E}_i(T_i) > 0$ where T_i time to return to i. The chain is called positive recurrent.

Ex of HMC irred recurrent but not positive recurrent?

Theorem (if irreducible, positive recurrence ⇔ inv proba distrib)

Let (X_n) HMC irred, of transition matrix P, we have the equivalence:

- **1** (X_n) admits a positive recurrent state,
- **2** (X_n) has all its states positive recurrent,
- (X_n) admits an invariant proba distribution.

In this case, the invariant proba distrib $\pi = (\pi_i)$ is unique and satisfies $\pi_i = 1/\mathbb{E}_i(T_i) > 0$ where T_i time to return to i. The chain is called positive recurrent.

Ex of HMC irred recurrent but not positive recurrent ? YES, e.g. symmetric random walk over $\mathbb Z$!

Special case: HMC with finite nb of states

Proposition

any finite state irreducible HMC is positive recurrent.

Theorem (Perron 1907 - Frobenius 1912)

Let P transition matrix of irred HMC, with N states, with period d, with sorted complex eigenvalues $|\lambda_1| \ge ... \ge |\lambda_N|$ then

- **2** complex unit roots $\lambda_1 = \omega^0$, $\lambda_2 = \omega^1$,..., $\lambda_d = \omega^{d-1}$ où $\omega = e^{2\pi i/d}$, are eigenvalues of P,
- **o** other eigenvalues $\lambda_{d+1},...,\lambda_N$ satisfy $|\lambda_j| < 1$.

Corollary (irred and aperiodic HMC)

 $P^n = \mathbf{1}^T \pi + O(n^{m_2-1} |\lambda_2|^n)$ where m_2 multiplicity of λ_2 ($|\lambda_2| < 1$)

Theorem (Convergence in law for HMC)

Let (X_n) HMC irreducible, positive recurrent, aperiodic, of transition matrix P and stationary distribution π . Then for any initial distribution v, for any state i,

$$\lim_{n\to +\infty} \mathbb{P}(X_n=i)=\pi_i$$

More precisely, $\lim_{n\to+\infty} ||vP^n-\pi||_{\infty} = 0$.

A classical proof: by coupling Markov chains

 \wedge Essential hypothesis: period = 1.

Ergodic theorem for HMC

Theorem (Ergodicity for HMC)

Let (X_n) HMC with values in E, irred, positive recurrent of invariant distrib π , and let $f: E \to \mathbb{R}$ such that $\sum_{i \in E} |f(i)| \pi_i < \infty$, then for any initial law ν , almost surely,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n f(X_k) = \sum_{i \in E} f(i) \pi_i$$

Periodic irreducible case

Question: dealing with irred HMC of period $d \ge 2$?

Periodic irreducible case

Question: dealing with irred HMC of period $d \ge 2$? **Reductions:** return to aperiodic case with $\frac{I+P+\cdots+P^{d-1}}{d}$ or P^d

Theorem (Convergence - periodic case)

Let (X_n) HMC irreducible, positive recurrent, of period d, with transition matrix P, let V_0, \ldots, V_{d-1} the bag cycle partition. Then for any initial distribution v, for all $0 \le r \le d-1$, for any state $i \in V_r$,

$$\lim_{n\to+\infty} \mathbb{P}(X_{nd+r}=i) = d/\mathbb{E}_i(T_i)$$

More precisely, $\lim_{n\to+\infty} ||vP^{nd+r} - d/\mathbb{E}_i(T_i)||_{\infty} = 0$

Periodic irreducible case

Question: dealing with irred HMC of period $d \ge 2$? **Reductions:** return to aperiodic case with $\frac{I+P+\cdots+P^{d-1}}{d}$ or $P^d \land \triangle$ loosing irred

Theorem (Convergence - periodic case)

Let (X_n) HMC irreducible, positive recurrent, of period d, with transition matrix P, let V_0, \ldots, V_{d-1} the bag cycle partition. Then for any initial distribution v, for all $0 \le r \le d-1$, for any state $i \in V_r$,

$$\lim_{n \to +\infty} \mathbb{P}(X_{nd+r} = i) = d/\mathbb{E}_i(T_i)$$

More precisely,
$$\lim_{n\to+\infty} ||vP^{nd+r} - d/\mathbb{E}_i(T_i)||_{\infty} = 0$$

Non irreducible case

Asymptotic study of the general case

- Study the transition graph structure and identify final classes
- Study the absorption probabilities of each final class
- Study the asymptotic behaviour in each final class (period, recurrence, invariant distribution ...)